Structure Reports

Online
ISSN 1600-5368

Li-Xue Zhang, ${ }^{\text {a* }}$ Jian-Yu Jin, ${ }^{\text {b }}$ San-Nu Zhou, ${ }^{\text {a }}$ Hong-Ping Xiao ${ }^{\text {a }}$ and An-Jiang Zhang ${ }^{\text {a }}$

${ }^{\text {a }}$ Department of Chemistry and Materials Science, Wenzhou Normal College, Wenzhou 325027, People's Republic of China, and ${ }^{\text {b }}$ Department of Educational Science, Wenzhou Normal College, Wenzhou 325027, People's Republic of China

Correspondence e-mail:
zhanglixuelz@yahoo.com.cn

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.031$
$w R$ factor $=0.080$
Data-to-parameter ratio $=13.6$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
3-[6-(4-Bromophenyl)-7H-1,2,4-triazolo[3,4-b]-[1,3,4]thiadiazin-3-yl]propanol

The title compound, $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{BrN}_{4} \mathrm{OS}$, crystallizes with two molecules in the asymmetric unit. Intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds enhance the stability of the crystal structure.

Comment

3,6-Disubstituted-7H-1,2,4-triaozlo[3,4-b][1,3,4]thiadiazines are among various heterocycles that have received considerable attention over the past two decades as potentially biologically active reagents (Zhou et al., 2006). Compound (I) was synthesized as part of our continuing research on this class of compounds and we report its structure here.

(I)

In (I), the five-membered triazole ring and the benzene ring are planar, while the six-membered thiadiazine ring is slightly distorted and may be regarded as having a half-chair conformation, atoms C8 and C7 (C20 and C21) being the out-ofplane atoms. The two independent molecules in the asymmetric unit have normal values for their bond lengths and angles (Fig. 1 and Table 1); these indicate that the fivemembered triazole rings are conjugated (Allen et al., 1987; Jin et al., 2004). $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds link the molecules into pairs (Table 2).

Experimental

The key intermediate 4-amino-5-mercapto-3-(3-hydroxypropyl)-1,2,4-triazole, (II), was prepared from 1,4-butyrolactone and thiocarbohydrazide in pyridine solution, following the method of Xiong et al. (2002). The starting materials for the thiocarbohydrazide were carbon disulfide and hydrazine hydrate. To a solution of (II) $(0.01 \mathrm{~mol})$ in absolute ethanol (20 ml) was added 2-bromo-4'bromoacetophenone (0.01 mol). The mixture was refluxed for 7 h . The solid obtained on cooling was filtered, washed with cold water, dried and recrystallized from ethanol to give (I). The purified product

Received 12 January 2006
Accepted 23 February 2006
was dissolved in 95% ethanol and single crystals were obtained after 4 d .

Crystal data

$\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{BrN}_{4} \mathrm{OS}$
$M_{r}=353.24$
Monoclinic, $P 2_{h} / c$
$a=6.9002(4) \AA$
$b=15.740(1) \AA$
$c=25.533(1) \AA$
$\beta=91.132(1)$

$V=2772.6(3) \AA^{\circ}$
$Z=8$

$$
D_{x}=1.693 \mathrm{Mg} \mathrm{~m}^{-3}
$$

Mo $K \alpha$ radiation
Cell parameters from 5420 reflections
$\theta=2.6-25.0^{\circ}$
$\theta=2.6-25.0^{-1}$
$\mu=3.12 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Block, colorless
$0.43 \times 0.26 \times 0.18 \mathrm{~mm}$

Data collection

Bruker SMART APEX area-	4895 independent reflections
\quad detector diffractometer	3926 reflections with $I>2 \sigma(I)$
φ and ω scans	$R_{\text {int }}=0.024$
Absorption correction: multi-scan	$\theta_{\max }=25.0^{\circ}$
$\quad(S A D A B S ;$ Bruker, 2002)	$h=-8 \rightarrow 5$
$T_{\min }=0.392, T_{\max }=0.579$	$k=-18 \rightarrow 18$
14310 measured reflections	$l=-26 \rightarrow 30$

Refinement

Refinement on F^{2}	$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0454 P)^{2}\right.$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.031$	$+0.4483 P]$
$w R\left(F^{2}\right)=0.080$	where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$S=1.01$	$(\Delta / \sigma)_{\max }=0.002$
4895 reflections	$\Delta \rho_{\max }=0.28 \mathrm{e}^{2} \AA^{-3}$
361 parameters	$\Delta \rho_{\min }=-0.43 \mathrm{e} \AA^{-3}$
H-atom parameters constrained	

Table 1
Selected geometric parameters ($\left(\AA^{\circ}{ }^{\circ}\right.$).

S1-C9	$1.738(2)$	S2-C22	$1.735(2)$
S1-C8	$1.811(3)$	S2-C21	$1.825(2)$
N1-C7	$1.295(3)$	N5-C20	$1.289(3)$
N1-N2	$1.385(2)$	N5-N6	$1.391(2)$
N2-C9	$1.365(3)$	N6-C22	$1.368(3)$
N2-C10	$1.381(3)$	N6-C23	$1.374(3)$
N3-C9	$1.296(3)$	N7-C22	$1.301(3)$
N3-N4	$1.407(3)$	N7-N8	$1.409(3)$
N4-C10	$1.306(3)$	N8-C23	$1.299(3)$
C9-S1-C8	$94.20(12)$	C22-S2-C21	$93.63(10)$
C9-N2-C10	$105.15(19)$	C22-N6-C23	$105.40(17)$
C9-N2-N1	$129.34(18)$	C22-N6-N5	$128.67(17)$
C10-N2-N1	$125.13(18)$	C23-N6-N5	$125.48(17)$
N3-C9-N2	$111.1(2)$	N7-C22-N6	$110.42(19)$
N3-C9-S1	$129.12(19)$	N7-C22-S2	$130.25(17)$
N2-C9-S1	$119.69(17)$	N6-C22-S2	$119.30(16)$

Figure 1
The structure of the asymmetric unit of (I), with the atom numbering, showing displacement ellipsoids at the 30% probability level.

All H atoms were positioned geometrically and allowed to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}=0.93$ and $0.97 \AA, \mathrm{O}-\mathrm{H}=0.82 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{O})$.

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP in SHELXTL (Bruker, 2002); software used to prepare material for publication: SHELXL97.

This work was supported by the Zhejiang Provincial Natural Science Foundation of China (No. M203149).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Bruker (2002). SADABS (Version 2.03), SAINT (Version 6.02), SMART (Version 5.62) and SHELXTL (Version 6.10). Bruker AXS Inc., Madison, Winsonsin, USA.
Jin, Z. M., Li, L., Li, M. C., Hu, M. L. \& Shen, L. (2004). Acta Cryst. C60, o642o643.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Xiong, Y., Zhang, L. X., Zhang, A. J. \& Xu, D. J. (2002). Synth. Commun. 32, 3455-3459.
Zhou, S. N., Zhang, L. X., Jin, J. Y., Xiao, H. P. \& Zhang, A. J. (2006). Acta Cryst. E62, o605-o606.

Table 2
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 2-\mathrm{H} 2 \cdots \mathrm{~N}^{\mathrm{i}}$	0.82	2.16	$2.956(3)$	164
$\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{~N}^{\mathrm{ii}}$	0.82	2.11	$2.911(3)$	166

Symmetry codes: (i) $x+1, y, z$; (ii) $x-1, y, z$.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

