organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Li-Xue Zhang,^a* Jian-Yu Jin,^b San-Nu Zhou,^a Hong-Ping Xiao^a and An-Jiang Zhang^a

^aDepartment of Chemistry and Materials Science, Wenzhou Normal College, Wenzhou 325027, People's Republic of China, and ^bDepartment of Educational Science, Wenzhou Normal College, Wenzhou 325027, People's Republic of China

Correspondence e-mail: zhanglixuelz@yahoo.com.cn

Key indicators

Single-crystal X-ray study T = 298 KMean σ (C–C) = 0.003 Å R factor = 0.031 wR factor = 0.080 Data-to-parameter ratio = 13.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. The title compound, $C_{13}H_{13}BrN_4OS$, crystallizes with two molecules in the asymmetric unit. Intermolecular $O-H\cdots N$ hydrogen bonds enhance the stability of the crystal structure.

[1,3,4]thiadiazin-3-yl]propanol

3-[6-(4-Bromophenyl)-7H-1,2,4-triazolo[3,4-b]-

Received 12 January 2006 Accepted 23 February 2006

Comment

3,6-Disubstituted-7*H*-1,2,4-triaozlo[3,4-*b*][1,3,4]thiadiazines are among various heterocycles that have received considerable attention over the past two decades as potentially biologically active reagents (Zhou *et al.*, 2006). Compound (I) was synthesized as part of our continuing research on this class of compounds and we report its structure here.

In (I), the five-membered triazole ring and the benzene ring are planar, while the six-membered thiadiazine ring is slightly distorted and may be regarded as having a half-chair conformation, atoms C8 and C7 (C20 and C21) being the out-of-plane atoms. The two independent molecules in the asymmetric unit have normal values for their bond lengths and angles (Fig. 1 and Table 1); these indicate that the five-membered triazole rings are conjugated (Allen *et al.*, 1987; Jin *et al.*, 2004). $O-H\cdots$ N hydrogen bonds link the molecules into pairs (Table 2).

Experimental

The key intermediate 4-amino-5-mercapto-3-(3-hydroxypropyl)-1,2,4-triazole, (II), was prepared from 1,4-butyrolactone and thiocarbohydrazide in pyridine solution, following the method of Xiong *et al.* (2002). The starting materials for the thiocarbohydrazide were carbon disulfide and hydrazine hydrate. To a solution of (II) (0.01 mol) in absolute ethanol (20 ml) was added 2-bromo-4'bromoacetophenone (0.01 mol). The mixture was refluxed for 7 h. The solid obtained on cooling was filtered, washed with cold water, dried and recrystallized from ethanol to give (I). The purified product

© 2006 International Union of Crystallography All rights reserved was dissolved in 95% ethanol and single crystals were obtained after 4 d. $\,$

 $D_x = 1.693 \text{ Mg m}^{-3}$

Mo $K\alpha$ radiation Cell parameters from 5420

reflections

 $\theta = 2.6-25.0^{\circ}$ $\mu = 3.12 \text{ mm}^{-1}$

T = 298 (2) K

Block, colorless

 $0.43 \times 0.26 \times 0.18 \; \text{mm}$

 $w = 1/[\sigma^2(F_0^2) + (0.0454P)^2]$

+ 0.4483*P*] where $P = (F_0^2 + 2F_c^2)/3$

 $\Delta \rho_{\rm max} = 0.28 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -0.43$ e Å⁻³

 $(\Delta/\sigma)_{\rm max} = 0.002$

Crystal data

 $\begin{array}{l} C_{13}H_{13}BrN_4OS\\ M_r = 353.24\\ Monoclinic, P2_1/c\\ a = 6.9002 \ (4) \ A\\ b = 15.740 \ (1) \ A\\ c = 25.533 \ (1) \ A\\ \beta = 91.132 \ (1)^{\circ}\\ V = 2772.6 \ (3) \ A^3\\ Z = 8 \end{array}$

Data collection

Bruker SMART APEX areadetector diffractometer4895 independent reflections φ and ω scans3926 reflections with $I > 2\sigma(I)$ φ and ω scans $R_{int} = 0.024$ Absorption correction: multi-scan $\theta_{max} = 25.0^{\circ}$ (SADABS; Bruker, 2002) $h = -8 \rightarrow 5$ $T_{min} = 0.392, T_{max} = 0.579$ $k = -18 \rightarrow 18$ 14310 measured reflections $l = -26 \rightarrow 30$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.031$ $wR(F^2) = 0.080$ S = 1.014895 reflections 361 parameters H-atom parameters constrained

Table 1

Selected geometric parameters (Å, °).

S1-C9	1.738 (2)	\$2-C22	1.735 (2)
S1-C8	1.811 (3)	S2-C21	1.825 (2)
N1-C7	1.295 (3)	N5-C20	1.289 (3)
N1-N2	1.385 (2)	N5-N6	1.391 (2)
N2-C9	1.365 (3)	N6-C22	1.368 (3)
N2-C10	1.381 (3)	N6-C23	1.374 (3)
N3-C9	1.296 (3)	N7-C22	1.301 (3)
N3-N4	1.407 (3)	N7-N8	1.409 (3)
N4-C10	1.306 (3)	N8-C23	1.299 (3)
C9-S1-C8	94.20 (12)	C22-S2-C21	93.63 (10)
C9-N2-C10	105.15 (19)	C22-N6-C23	105.40 (17)
C9-N2-N1	129.34 (18)	C22-N6-N5	128.67 (17)
C10-N2-N1	125.13 (18)	C23-N6-N5	125.48 (17)
N3-C9-N2	111.1 (2)	N7-C22-N6	110.42 (19)
N3-C9-S1	129.12 (19)	N7-C22-S2	130.25 (17)
N2-C9-S1	119.69 (17)	N6-C22-S2	119.30 (16)

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$\begin{array}{c} O2 - H2 \cdots N3^{i} \\ O1 - H1 \cdots N7^{ii} \end{array}$	0.82	2.16	2.956 (3)	164
	0.82	2.11	2.911 (3)	166

Symmetry codes: (i) x + 1, y, z; (ii) x - 1, y, z.

Figure 1

The structure of the asymmetric unit of (I), with the atom numbering, showing displacement ellipsoids at the 30% probability level.

All H atoms were positioned geometrically and allowed to ride on their parent atoms, with C–H = 0.93 and 0.97 Å, O–H = 0.82 Å and $U_{iso}(H) = 1.2U_{eq}(C,O)$.

Data collection: *SMART* (Bruker, 2002); cell refinement: *SAINT* (Bruker, 2002); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *XP* in *SHELXTL* (Bruker, 2002); software used to prepare material for publication: *SHELXL97*.

This work was supported by the Zhejiang Provincial Natural Science Foundation of China (No. M203149).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Bruker (2002). SADABS (Version 2.03), SAINT (Version 6.02), SMART (Version 5.62) and SHELXTL (Version 6.10). Bruker AXS Inc., Madison, Winsonsin, USA.
- Jin, Z. M., Li, L., Li, M. C., Hu, M. L. & Shen, L. (2004). Acta Cryst. C60, 0642– 0643.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Xiong, Y., Zhang, L. X., Zhang, A. J. & Xu, D. J. (2002). Synth. Commun. 32, 3455–3459.
- Zhou, S. N., Zhang, L. X., Jin, J. Y., Xiao, H. P. & Zhang, A. J. (2006). Acta Cryst. E62, 0605–0606.